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The interaction between flexural modes due to nonlinear potentials is critical to heat conductivity

and mechanical vibration of two dimensional materials such as graphene. Much effort has been

devoted to understanding the underlying mechanism. In this paper, we examine solely the out-of-

plane flexural modes and identify their energy flow pathway during the equipartition process. In

particular, the modes are grouped into four classes by their distinct symmetries. The couplings are

significantly larger within a class than between classes, forming symmetry blockades. As a result,

the energy first flows to the modes in the same symmetry class. Breakdown of the symmetry

blockade, i.e., inter-class energy flow, starts when the displacement profile becomes complex and

the inter-class couplings bear nonneglectable values. The equipartition time follows the stretched

exponential law and survives in the thermodynamic limit. These results bring fundamental under-

standings to the Fermi-Pasta-Ulam problem in two dimensional systems with complex potentials

and reveal clearly the physical picture of dynamical interactions between the flexural modes, which

will be crucial to the understanding of their contribution in high thermal conductivity and mecha-

nism of energy dissipation that may intrinsically limit the quality factor of the resonator. Published
by AIP Publishing. https://doi.org/10.1063/1.5009492

Nano-electromechanical resonators (NEMS) based on

two dimensional (2D) materials, such as graphene, have

attracted extensive attention due to their low mass and high

quality factors (Q factors).1–4 The Fermi-Pasta-Ulam (FPU)

physics5 plays an important role in the performance of gra-

phene resonators as the dissipation of the fundamental mode

due to coupling with other modes intrinsically limits the Q

factor of the device.6 A key feature of a 2D material is that it

bears the flexural (out-of-plane) modes, which plays an

important role in the high heat conductivity7 and the superior

performance of mechanical vibrations.1 To understand the

anharmonic phonon-phonon scattering, it is critical to treat

the interaction between these modes induced by the nonlin-

ear potentials and identify the route to equipartition.5,8,9 This

has been investigated in 1D cases where for the FPU-b
model, the energy flow pathway is obtained analytically

based on the sine form of mode functions.10 A different

approach based on perturbation theory is also proposed.11,12

While the analysis can be feasible for 1D lattices and when

the nonlinear potential is simple, it is highly nontrivial to

extend the methods to 2D systems,13 especially for those

with complex potentials such as graphene.

In this paper, we investigate exclusively the energy

equipartition between the flexural modes, which is important

for graphene nanomechanical resonators as the out-of-plane

motion is their most dominant dynamics.1,3,14,15 We have

developed a numerical procedure to characterize the interac-

tion between the modes due to nonlinear potentials. Our

computation unveils completely the route and microscopic

dynamics of thermalization. Interestingly, we found that the

flexural modes are grouped into different classes based on

their symmetry properties. The modes within each symmetry

class have strong interactions, while the modes belonging to

different symmetry classes have much weaker interactions.

This forms the blockade for the energy flow due to the sym-

metry. Particularly, in the case where only one mode is

excited initially, its energy will redistribute to the modes in

the same symmetry class in a short time. While for modes in

the other symmetry classes, it takes a substantially longer

time for them to get energy, which occurs only when the

interactions between these modes and the modes in the class

that is first excited become large, as more and more modes

get energy and the displacement profile becomes complex.

For the cases that can reach equipartition, our extensive sim-

ulations confirm the stretched exponential form of relaxation

time, which survives in the thermodynamic limit. Our results

are of great theoretical significance and can also help to

understand the role played by flexural modes in high thermal

conductivity in graphene and the mechanism of energy dissi-

pation that constrains the Q factor limits in graphene

resonators.

We focus on a set of square graphene sheets with fixed

boundaries [Fig. 1(a)]. The length of the graphene sheets

varies from 2.7 nm to 16.8 nm with 11 different sizes, and

the total number of carbon atoms is in the range of [296,

10 820]. We employ the valence force field (VFF) model

considering the interatomic carbon sp2 bond interactions16–19
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to atom j. a0¼ 1.421 Å is the equilibrium bond length, and

Di ¼
P

j rij is the dangling bond vector. The parameters

a¼ 155.9 J/m2, b¼ 25.5 J/m2, and c¼ 7.4 J/m2 have the

same dimension as the coefficient of stiffness.16–19 The first

term of the potential gives the energy cost necessary to

change the angle between pz-orbitals, which are approxi-

mately normal to the graphene surface. The last two terms

represent the energy cost necessary to change the length and

angle between covalent C-C bonds.

To address the effect of flexural modes and in accor-

dance with the motion of graphene resonators, we consider

only the z-direction motion. The VFF model can be simpli-

fied as Usp2 ¼
PN

i¼1 cð
P

j zj�3ziÞ2þ 1
2
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zi is the z-displacement of site i from its equilibrium position.

It is clear that U(2) is the second order potential, which corre-

sponds to the linear interaction, while U
ð4Þ
1 and U

ð4Þ
2 are the

fourth order potentials. Therefore, the z direction vibration of

the graphene system can be effectively an FPU-b model in

the hexagonal lattice.

The force acting on the ith atom is given by
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and n is the order of the potential term. The

equation of motion can be written as mz¼Vð2Þ �zþVð4Þ �z,

where z¼½z1;…;zN�T is the vector of displacement in the z-

direction, and Vð2Þ¼½Vð2Þij �N�N and Vð4Þ¼½Vð4Þij �N�N corre-

spond to linear and nonlinear force fields and can be derived

from Uð2Þ;U
ð4Þ
1 , and U

ð4Þ
2 , respectively. Specifically, Vð2Þ is

given by Vð2Þmn¼�24c if n¼m, 12c if n¼m’s nearest neigh-

bor, �2c if n¼m’s next nearest neighbor, and 0 otherwise.

V
(4) can be obtained numerically from U

ð4Þ
1 and U

ð4Þ
2 . Let

fki;ui;i¼1;…;Ng be the set of eigenvalues and eigenvectors

of V(2), i.e. Vð2Þui¼kiui¼�mx2
i ui, then ui will be the nor-

mal mode of the system with eigenfrequency xi¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ki=m

p
.

For a given configuration z such that z¼
P

j cjuj, where cj

are the normal coordinates, denote c¼½c1;…;cN �T , we have

m€cðtÞ ¼ K � cðtÞ þ SðtÞ � cðtÞ; (1)

where K¼diag½k1;…;kN�¼�mdiag½x2
1;…;x2

N�; S¼½Sij�N�N

and Sij¼u
†

i V
ð4Þuj is the coupling of the two normal modes

under the nonlinear potential, whose absolute value charac-

terizes the coupling strength between them. Typically, V
(4)

depends on the displacements of the sites and is time-

varying, and thus, Sij will also be time-dependent and can

actually vary significantly during the evolution. Indeed, since

the elements of V(4) are the second order polynomials of z,

through the expansion z¼
P

j cjuj; S will be the second order

polynomials of cj. So, the term S �c will be cubic in the mode

components.

For the graphene shown in Fig. 1(a), there are 1748 flex-

ural modes in total, which is equal to the number of move-

able atoms. Figure 1(b) shows the frequency spectrum for

the graphene, where the frequencies are ordered by increas-

ing values. Due to mirror symmetry of the system, the flex-

ural modes are either symmetric (S) or antisymmetric (A)

with respect to the x or y axis and are grouped into four dif-

ferent classes: symmetric-symmetric (SS), antisymmetric-

symmetric (AS), SA, and AA, which is shown in Fig. 1(a) as

the insets for the first four modes.

In order to characterize the relative magnitude of the three

terms of the valence force potential, we calculate the potential

terms Uð2Þ; U
ð4Þ
1 , and U

ð4Þ
2 for the whole system under static

perturbations, which is shown in Fig. 1(c). The static perturba-

tion is on the first normal mode with different amplitudes, i.e.,

zi � u1,i, characterized by g which is defined as the ratio of the

largest deformation in the z direction to the size of the graphene

sheet. In addition, the magnitude of initial deformation can also

be characterized by the specific energy � under the given per-

turbing profile, which is defined as � ¼ Usp2=N. From Fig. 1(c),

it can be noted that there is a cross point around g � 0.03, or U
� 10�20J, that for small deformation (U� 10�20J), U(2) domi-

nates, the system can be regarded as a harmonic oscillator with

small nonlinear perturbations, and thus, the energy equipartition

time can be long. While for large deformation (U	 10�20J),

the system is highly nonlinear, and the energy can be easily

equiparticipated.

For a given static perturbation on mode 1, Fig. 2(a)

shows the coupling strength jSikj between the flexural mode

k¼ 1 and all the other modes at t¼ 0. It is clear that, for a

given initially excited mode, only the couplings with modes

FIG. 1. (a) Configuration of the graphene sheet. The sheet is 6.9 nm by 7.4 nm, which contains 1992 carbon atoms in total and 1748 inner atoms that are able

to move. The insets show the first four normal modes with different symmetries: symmetric-symmetric (SS), antisymmetric-symmetric (AS), SA, and AA with

respect to x and y axes. Light gray (red) and black (dark blue) indicate maximum and minimum values of the normal modes, respectively. (b) The frequency

spectrum versus mode number. The frequencies are ordered by increasing values. The minimum and maximum frequencies are 3.04� 1011 rad/s (48.4 GHz)

and 1.63� 1014 rad/s (26.0 THz), respectively. (c) The potential terms Uð2Þ; U
ð4Þ
1 , and U

ð4Þ
2 versus relative deformation g. The graphene sheet is deformed with

the first normal mode.
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belonging to the same symmetry class are significant, while

the values for the other modes are about 10 orders smaller,

which can be neglected in the beginning of the equipartition

process. Figure 2(b) shows the contour plot of the coupling

strength matrix ½jSijj� for the same perturbation at t¼ 0. The

modes are reordered that those belonging to the same sym-

metry class are grouped together. The matrix shows clear

clustered structures: the coupling strength between modes

within the same symmetry class is dominantly large, e.g.,

about 15 orders larger than those between different symme-

try classes. Although the perturbation is on the first mode,

the global clustered structure is independent of this particular

mode, as the coupling strength for the other clusters is in the

same order of the cluster with the first mode. This forms the

blockade due to the symmetry of the modes. Since the cou-

pling characterizes the interaction strength between the

modes, this would result in a quick energy flow among

modes in the same symmetry class but a much slower energy

flow between different symmetry classes. This has been

noticed in the original FPU paper5 that when a symmetric

quartic potential is applied and the lattice is initially per-

turbed using an odd mode, the symmetry will be kept and

only a few odd modes can be excited. Note that there are

some interclass couplings that are also discernible, such as

the coupling strength between mode 1 and the first few

modes in the SA class as shown in Fig. 2(a). These couplings

play a key role in the process of equipartition by breaking

the barrier and guiding energy flow between different sym-

metry classes.

In our molecular dynamics (MD) simulations, the gra-

phene sheet is initially deformed in the z direction proportional

to a particular normal mode. The initial velocities are set to

zero as the thermal motion has been ignored during our simula-

tion. The MD simulation is performed using the simplified

potential only considering z-displacements, where the Verlet

algorithm is used for integration with a time step of 0.5 fs. The

harmonic energy, i.e., the quadratic part of the energy of mode

i, is given by EiðtÞ ¼ 1
2

mð _ci
2 þ x2

i c2
i Þ.

20,21 Equipartition is

achieved if the energy for all the modes is comparable to each

other. For most cases with large excitation energy, the system

can evolve into equilibrium quickly. For some extremely low

energy, the system cannot evolve into equilibrium within our

computation power of 6� 108 steps, corresponding to 300 ns.

The route to energy equipartition is mostly determined by

the coupling matrix S. From Fig. 2, due to the symmetry

blockade of S, this would lead to distinct time scales of energy

flow among modes in the same symmetry class and those

between different symmetry classes. To validate this physical

picture, we calculate the harmonic energy spectrum directly

during the time evolution of the system. We use the standard

deviation of the modes’ energy on the logarithmic scale to char-

acterize the process towards equipartition: rðtÞ ¼ h½ log10EiðtÞ
�h log10EiðtÞi�2i1=2

, where the average is over all the normal

modes. A typical behavior of r versus t for large initial energy

is shown in Fig. 3(a), where the initial perturbation is on mode

1. In the beginning, [Sij] has finite values only for intra-class

couplings, and thus, only modes in the same class of mode 1

gain energy [Fig. 3(b)]. The fine structure in Si1 within the class

[Fig. 2(a)] is also preserved in the energy spectrum [Fig. 3(b)].

As time evolves, inter-class couplings become larger, and at

time marked by (c), the strength of the coupling with class

1 has a descending order of classes 3, 2, and 4 [inset (c) of Fig.

3(a)], and thus, the modes in class 3 gain more energy [Fig.

3(c)]. However, later, the couplings between class 1 and class 4

are more significant, in a descending order of classes 4, 2, and

3 [inset (d) of Fig. 3(a)]. As a result, the energies for these three

classes also follow this order [Fig. 3(d)]. The equipartition time

s is defined when rðsÞ ¼ rmax=9 and s > tðrmaxÞ. When equi-

partition is achieved [Fig. 3(e)], the clustered structure in [Sij] is

also completely diminished [inset (e) of Fig. 3(a)].

An energy gap between the acoustical branch and the

optical branch is observed in Fig. 3(c), indicating that the

energy flows much easier from mode 1 to the acoustical

FIG. 2. (a) The coupling strength jSikj between the mode k¼ 1 and the other

modes. The displacement profile is proportional to mode 1, and the specific

energy is � ¼ 1:1127� 10�23 J. The system is 6.9 nm by 7.2 nm (1748 mov-

able atoms). The first half modes, say i
 874, are in the acoustical branch.

The last half modes (i> 874) are in the optical branch. For clarity reasons,

not all the data points are plotted. For the modes in the same symmetry class

as the initially excited one, one data point of every four is plotted, while for

the modes in the other symmetry classes, one data point of every twelve is

plotted. The four symmetry classes are marked by different symbols and col-

ors. (b) For the same excitation, the contour plot of the coupling strength

matrix ½jSijj�; i; j ¼ 1; 2;…; 1748. The modes are reordered that those

belonging to the same symmetry class are grouped together.

FIG. 3. (a) r versus time. Mode 1 is excited with initial energy � ¼ 1:1127

�10�23 J. The insets show the contour plots of the matrix [Sij] on the log-

scale at different time instances marked by (b)–(e). [Sij] matrix is reordered

such that clusters 1–4 are for SS, AS, SA, and AA, respectively. (b)–(e) The

corresponding energy spectrum at t¼ 0.01 ns, 10.79 ns, 17.55 ns, and 47.96 ns,

respectively, as marked in (a). The time for (e) corresponds to the equiparti-

tion time s.
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branch. This has been noticed by Galgani et al.,22 where a

model of 1D alternating masses was considered. Based on

their results that the energy for the acoustic modes is far

larger than that for the optical modes, it is conjectured that

due to the separation of the subsystems (acoustic modes and

optical modes), the energy may freeze within one subsystem,

leading to nonequipartition. While for our case, although the

acoustic modes are easier to get energy, it is not a dominant

factor. The dominant separation of the subsystems is formed

by the different symmetry classes.

It has been suggested that the equipartition time s scales

with the specific energy � as s / exp ð��aÞ.23–26 We have

carried out extensive numerical calculations to obtain the

equipartition time for different flexural modes and initial

excitation energies. The results are plotted in Fig. 4(a) for

the graphene sheet with 1748 free atoms. One can see that,

in the loglog plot of s versus energy �, the data points do not

reside on a straight line but are curved and fitted well with

s � exp ð��aÞ. The fitted exponent a is shown in Fig. 4(b).

For higher modes, the exponent becomes larger, indicating

that in the small energy limit, higher modes are more diffi-

cult to reach energy equipartition. This is also evident from

Fig. 4(a), which has a cross point around � � 10�20 J for dif-

ferent modes. For larger energy, higher modes are easier to

reach equipartition, while for small energies, higher modes

are more difficult to reach equipartition. For example, at

� � 10�22 J, the equipartition time for higher modes can be a

hundred times longer than that for lower modes.

An important issue which has attracted much attention is

that whether the law of relaxation time could survive in the

thermodynamic limit.26,27 We have investigated graphene

sheets with different sizes, with L ranging from 2.7 nm

(N¼ 296) to 16.8 nm (N¼ 10 820). Figure 4(c) shows the

equipartition time for different sizes. The initial deformation is

on the first mode. In general, larger systems have a smaller

equipartition time, and thus, large systems are easier to get

energy equipartition. In addition, as the size L increases, except

the three smallest sizes (circles, pluses, and stars), the data

points collapse to a single curve, indicating the convergence of

the scaling in the large size limit. Figure 4(d) plots the fitting

exponent a versus the system size L. a has a large value when

the size is small and decreases as L increases, reaching a stable

value around L¼ 8 nm. This confirms that the scaling behavior

does hold in the thermodynamic limit of large systems.

It should be noted that the stretched exponential law for the

equipartition time is in contrast with Ref. 27 where it is found

that the relaxation time follows the 1/� law for a 2D lattice. This

can be understood that the linear behavior of the lower part of

the frequency spectrum is important for the formation of meta-

stable states27 that lead to the stretched exponential form for the

relaxation time.26 However, in Ref. 27, it is focused on the in-

plane modes where the frequency spectrum is irregular and the

linear part is lacking. As a result, although searched, the metasta-

ble states are not found. However, in our case, as shown in Fig.

1(b), the lower part of the frequency spectrum is linear, which is

consistent with the dispersion relation for graphene18 that for in-

plane modes, the frequency depends linearly on the wavevector,

while for the out-of-plane flexural modes, the dependence

becomes parabolic at the C point, leading to a linear frequency

spectrum and metastable states.6,28 This justifies the stretched

exponential form in our case.

To conclude, we have investigated the interactions between

the flexural modes due to nonlinear potentials in square

graphene resonators. The flexural modes are divided into differ-

ent classes owing to their symmetries. It is found that the intra-

class interactions are significantly stronger than inter-class

FIG. 4. (a) The equipartition time s versus the initial specific energy � for different modes of the graphene sheet in Fig. 1. Darker symbols indicate higher

modes. The mode number can be readout from the horizontal label of (b), where the same symbol is for the same mode. (b) The values of a versus the mode

number i. For each normal mode, a is derived by fitting the data with s � exp ð��aÞ. The error bar is the confidence interval during fitting. (c) s versus � for gra-

phene sheets with different sizes. The initial deformation is on mode 1. Each type of symbol corresponds to one size, which can be readout from the horizontal

label of (d). Darker symbols indicate larger graphene sheets. (d) The values of a versus the size L of the graphene sheets. The corresponding number of atoms

is 296, 586, 894, 1266, 1992, 2328, 2908, 4434, 6192, 8346, and 10 820, respectively.
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interactions. Therefore, the modes belonging to the same sym-

metry class as the initially excited one can be easily excited,

while modes in different symmetry classes will be blocked,

especially in the beginning of the evolution of the system.

However, as time evolves, more and more modes are excited,

and the displacement profile becomes complex such that the

interaction between modes in different symmetry classes also

becomes large, and then, the inter-class blockade can be broken,

leading to final equipartition. Because of the existence of sym-

metry blockades, phonon-phonon scattering between different

symmetry classes is significantly suppressed, providing a similar

mechanism to reduce the phase space for allowed anharmonic

phonon-phonon scattering as observed in Ref. 29, contributing

to the high thermal conductivity of graphene. The relaxation

time follows the stretched exponential law and survives in the

thermodynamic limit. The dependence of the relaxation time on

the system size may be helpful to understand the superanoma-

lous heat conduction13 in graphene, but it needs further in-depth

studies to clarify the detailed relation. Therefore, our results

have revealed the dynamical organization and the route to equi-

partition of the flexural modes, which are important to the under-

standings of the flexural modes and their peculiar contributions

to the high heat conductivity and to the understanding of the

energy dissipation mechanism due to anharmonic phonon-

phonon scattering.
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