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Abstract   Complex networks describe a wide range of sys-
tems in nature and society. Since most real systems exist in 
certain physical space and the distance between the nodes has 
influence on the connections, it is helpful to study geographi-
cal complex networks and to investigate how the geographical 
constrains on the connections affect the network properties. 
In this paper, we briefly review our recent progress on geo-
graphical complex networks with respect of statistics, mod- 
elling, robustness, and synchronizability. It has been shown 
that the geographical constrains tend to make the network less 
robust and less synchronizable. Synchronization on random 
networks and clustered networks is also studied. 
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Complex networks provide powerful tools to investigate com- 
plex systems in nature and society [1−3]. The properties of 
complex systems are affected by the geographical distribution 
of the components. For example, routers of the Internet [4] 
and transport networks [5, 6] lay on the two-dimensional sur- 
face of the globe; world-wide airport network is confined by 
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the geography [7−9]; neuronal networks in brains [10] oc-
cupy three-dimensional space. Thus it is helpful to study the 
geographical complex networks [11−19]. 

To be specific, for the Chinese railway system, viewing the 
stations as “nodes” and rails as “links”, the railway system is 
actually a complex geographical network. Our recent statis-
tics on 3431 stations and 2147 trains nationwide [20] reveals 
that for this network, the clustering coefficient is almost zero, 
indicating sparse connections between the stations, therefore 
it is a tree network. This is the most economic way to con-
struct a transportation network. On the other hand, viewing 
the stations as “nodes” and say if there is a link between two 
stations if at least one train stops at both stations, the railway 
system can be viewed as a geographical traffic network. 
Statistics reveals that this traffic network has large clustering 
coefficients ( 0.8C 3)〈 〉 =  and small average network distance 

( 3.27d )〈 〉 = , that is, starting from any station, one only need  
to transfer at most twice to reach another station (could be a 
very small station) through the railway system. The degree 
distribution is scale-free. Consequently, the railway traffic 
network is a small world network with scale-free property. 

To investigate the effect of geographical constrains on net- 
work properties, we first proposed a geographical network 
model with a tunable parameter to control the geographical 
effects [21], then studied the percolation problem [22, 23], 
cascading breakdown [24], and synchronization [25] on this 
network model to find out how the geographical constrains 
affect these network properties. Synchronization on random 
networks [26] and on clustered networks [27] is also dis-
cussed. 

In this paper, we mainly focus on scale-free (SF) networks, 
i.e., the degrees of nodes satisfy a power law distribution:  
P(k) ~ k−λ, for their ubiquity in real systems [1−3]. The net- 
work is generated as follows [21]. It begins with an  
lattice, with periodical boundary conditions, and for each 

L L×
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node assigned a degree k drawn from the prescribed SF de-
gree distribution P (k) ∼ k−λ, k � m. Then a node i is
picked out randomly; according to a Gaussian weight func-
tion fi(r) = De−(r/A

√
ki)

2
, it selects other nodes and estab-

lishes connections until its degree quota ki is filled or until
it has tried many enough times. Duplicate connections are
avoided. The process is carried out for all the nodes in the lat-
tice. The clustering parameter A controls the average spatial
distance of the connections, therefore controls the geograph-
ical constrains on the network topologies. For large A limit,
e.g. A

√
m � L, the weight function will be trivial, and the

network becomes a SF random (SFR) network, i.e., random
in network connections. For small A, the network approaches
lattice embedded SF (LESF) networks with nearest neighbor
connections [12, 13]. Here, we assume that the time scales
governing the dynamics are much smaller than that character-
izing the network evolvement. Thus, the static geographical
network models are suitable for discussing the problem un-
der investigation. Figure 1 shows the direct chemical shell
structure [12, 13], with different gray levels depicting differ-
ent shells consisting of nodes with the same network distance
from a given node, which is assumed to be the central node
in each graph. Along with WLESF, the LESF model and the
Scale-Free Random model (SFR) are also presented. Here,
λ is fixed to 3.0 for all the three models, and A is varied as
1, 2, 3, and 5 in WLESF. As A goes larger, the shell boundary
blurs and finally disappears as that of random graphs. The
shell graph of WLESF shows an obvious structural transition
from the LESF model to the SFR model.

Fig. 1 Chemical shells of WLESF model, together with that of LESF model
and SFR model. Each shell graph has a size of 195 × 195.

When losing nodes of fraction p, the remaining nodes of
a network may still have a spanning cluster that most of the
nodes are on this cluster and there are paths from one node to
another globally. However, when losing enough nodes, at a
certain point (percolating threshold pc), the spanning cluster

breaks into small pieces, and no path exist for global infor-
mation transmission, that is, the network breakdowns. The
heterogeneity of the degrees often makes the scale-free net-
works sensitive to intentional attacks (nodes with largest de-
grees are removed from the network first) [28−30], while it is
resilience to random breakdowns (node are removed with the
same probability p) [30, 31]. Figure 2 shows the dependence
of pc on A for both intentional attack and random removals.
As A increases, pc becomes larger, means it needs to remove
more nodes to break the spanning clusters. Therefore, as the
network is more loosely connected (average spatial distance
is larger), the network is more robust to losing nodes.

Fig. 2 Percolation transition point pc versus cutoff parameter A. The up-
per and lower boundaries indicate the values of pc of SFR and LESF model
respectively. (a) is for intentional attacks and (b) is for random attacks. For
each data, N = 10000, λ = 3.0 and 〈k〉 = 8.

To better understand the numerical results, we employ

the generating function method to determine the percola-

tion threshold for networks with different clustering proper-

ties. Here the clustering properties can be simply depicted by

the clustering coefficient, which counts for the triangles (3-

cycles) in the network, and it can also be represented by the

number of rectangles (4-cycles), and generally by the number

of L-cycles. In the following, a general relation of the perco-

lation threshold qc = 1 − pc and the number of L-cycles for

a random network with arbitrary degree distribution is deter-

mined. As an example, the dependence of qc on the clustering

coefficient is obtained.

For uniform occupations (or random failures), the per-

colation threshold of random tree-like networks is q c =
〈k〉/〈k(k − 1)〉 [31, 32]. It could be obtained by the con-

dition that the average cluster size diverges, or equivalently,

the average size of clusters that reached by following an edge

diverges. A real network is usually clustered and contains cer-

tain amount of cycles. If the number of cycles is small, (e.g.

each node belongs to at most one cycle) the generating func-

tion process can be extended to cope with the random perco-

lation problem. In a recent paper [23], after lengthy deviation,

we finally get the percolation threshold qc:
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qc =
〈k〉

〈k(k−1)〉−2〈knL(k)〉
[
1− 2−ql1

c −ql2
c

2(1−qc)
qc〈k(k−2)〉

〈k〉
]

(1)

When nL = 0, this result degenerates to the known result
of the tree-like networks: qc = 〈k〉/〈k(k − 1)〉. In general
qc < 1, as L → ∞, ql1

c and ql2
c limit to 0, Eq. (1) reduces to

a second order equation for qc. The root with physical mean-
ings is qc = 〈k〉/〈k(k − 1)〉, which is just the percolation
threshold of the tree-like networks. This means that the cy-
cles of infinite length do not affect the percolation thresholds.
The numerical tests for several typical data values show that,
for the same number of cycles, qc is an increasing function of
ql1
c + ql2

c . The higher the cycle order L is, the less influence it
will be. Thus the most influential cycles are 3-cycles, which
could be expressed by the clustering coefficients.

For L = 3, l1 = l2 = 1. If the clustering coefficient
C = 〈C(k)〉 is small enough, we may assume that two tri-
angles could only have at most one common node. A node
with degree k reached by an edge will belong to on aver-
age n3(k) = (C(k)(k − 1)(k − 2) + C(k)(k − 1))/2 =
C(k)(k − 1)2/2 triangles. Eq. (1) will reduce to

qc =
〈k〉

〈k(k−1)〉−
(

1−qc
〈k(k−2)〉

〈k〉
)
〈C(k)k(k−1)2〉

(2)

The percolation threshold qc increases monotonically with
〈C(k)k(k − 1)2〉. It is straightforward that when C(k) limits
to 0, n3 → 0, qc returns to 〈k〉/〈k(k−1)〉. On the other hand,
if 〈C(k)k(k−1)2〉 diverges, qc maximizes to 〈k〉/〈k(k−2)〉.

Although Eq. (2) holds only for the case of small cluster-
ing coefficient C, the analysis above indicates that for large
C, or if the network has higher order cycles, the fraction of
edges that inter-connect existed nodes in a local cluster will
further increase. Thus the number of efficient edges connect-
ing to “new” nodes (in comparison to the nodes within the
local cluster) may be even smaller, which results in a higher
percolation threshold. Thus when a network is more clus-
tered, or has more cycles—not only of order 3—it will be less
robust.

Figure 3 shows the clustering coefficients for different A

values. For each given degree exponent λ, the larger the A

is, the looser the local cluster is, as a result, the smaller the
clustering coefficient is. This is consistent with the result that
networks with larger A is more robust to percolation.

In many realistic situations the flow of physical quantities
in the network, as characterized by the loads on nodes, is
important. For such networks where loads can redistribute

Fig. 3 Clustering coefficients of LESF, WLESF and SFR model. Lines
in graphs (a), (b) and (c) from up to down are the LESF model (squares),
WLESF model with A = 1, 2, 3, 5, 7, and SFR model (right toward trian-
gles). (d) clustering coefficients C versus the cutoff parameter A in WLESF
model, in log-log scale, for N = 260 000 (the last data of WLESF model
in (a), (b) and (c)) and λ = 2.5, 3.0, 5.0 for squares, circles and triangles
respectively; the first and last data of each line are that of LESF model and
SFR model respectively, the values of A for these points are adjusted to fit
the curve.

among the nodes, a failure of a node can lead to a cascade of
overload failures, which can in turn cause the entire or a sub-
stantial part of the network to collapse. Many real systems-
e.g., power grid networks, traffic lines, Internet-are sensitive
to cascading failures and are located on the two-dimensional
global surface, the influence of geographical structures on
cascading breakdowns is thus of high importance. Here, by
studying the influence on the cascading behavior of the net-
works by varying A, we uncovered how the geographical
structures affect cascading breakdowns [24].

To investigate the cascading breakdowns on networks, we
employ the sandpile dynamics as follows: (i) At each time
step, a grain is added at a randomly chosen node i. (ii) If
the height at node i reaches or exceeds a prescribed threshold
zi = ki, the degree of node i; then it becomes unstable and the
grains topple to its adjacent nodes: hi = hi−ki; and for each
neighbor j: hj = hj + 1; during the transfer, there is a small
fraction f of grains being lost, which plays the role of sinks
without which the system becomes overloaded in the end. (iii)
If this toppling causes any of the adjacent nodes to become
unstable, subsequent topplings follow on those nodes in par-
allel until there is no unstable node left, forming an avalanche
event (the cascadings). (iv) Repeat (i)−(iii).

The main feature of the BTW sandpile model is the emer-
gence of a power law with an exponential cutoff in the
avalanche area distribution,



108 Kong-qing YANG, et al., Front. Phys. China, 2008, 3(1)

p(a) ∼ a−τe−a/ac (3)

where ac is the characteristic area, i.e., the number of distinct
nodes that toppled in an avalanche event.

The avalanche area exponent for different A of WLESF
network is shown in Fig. 4. As A goes larger, avalanche area
exponent τ increases, and the curves of avalanche area dis-
tribution become sharper in the double-log plot (see inset of
Fig. 4), which corresponds to fewer large avalanche events.
This transition in τ illuminates that when the network is geo-
graphically more loosely connected, it will be harder for large
cascading events to occur.

Fig. 4 Avalanche area exponent τ versus the clusterness parameter A, for
λ = 3.0 (squares), 5.0 (circles) and 10.0 (triangles), note that the errorbars
in most cases are smaller than the symbol size. The data are fitted by formula
3. Inset: avalanche area distribution for λ = 3.0, from top to bottom are
LESF, WLESF A = 1, A = 2, and SFR networks. The loosing probability
is f = 0.001, and m = 4, N = 105. Ten network realizations are carried
out and for each 106 avalanche events are recorded for statistics. The data
are log-binned.

The range of an edge is the length of the shortest paths be-
tween the nodes it connected in the absence of itself. If an
edge’s range is l, the shortest cycle it lies on is of length l+1.
Thus the distribution of range in a network sketches the dis-
tribution of shortest cycles. The inset of Fig. 5 shows that
when the spatial constraint is slighter, as A goes larger, the
range distribution drifts to larger ranges. It means that net-
works with loose spatial connections have fewer small order
cycles but more higher order cycles. If there are many small
order cycles, the toppling grains are more likely to meet, and
the nodes with fewer grains, i.e., fewer than z − 1, especially
those with z − 2 or z − 3 grains, could also reach the top-
pling threshold z and topple. For example, let ABCD be a
quadrangle, and A, B and D are all in their critical height
zA − 1, zB − 1 and zD − 1, respectively; if A topples, then
B and D will also topple cascadingly, thus C will receive 2
grains. So even if C has less grains than its critical height
zC − 1, it could also topple. Larger order cycles contribute
less to this effect. The main frame of Fig. 5 shows the frac-

tion of nodes toppled in avalanches that have precisely z − 1
grains. As the network is less geographically constrained and
has fewer small order cycles, the fraction of toppling nodes
with z−1 grains increases, substantiating our reasoning. This
effect contributes to the large avalanche events of the densely
connected networks and explains the decrease of avalanche
area exponent τ as the network is more geographically con-
strained. Since many real networks that carry some kinds of
loads-e.g., power, traffic, data packets–are imbedded in the
2D global surface and highly clustered, our results indicate
that they will be at higher risk to suffer breakdowns when
there are node failures.

Fig. 5 Fraction of nodes that toppled after receiving only one grain in
an avalanche event versus avalanche area. From bottom to top is LESF
(squares), WLESF A = 1 (circles), A = 2 (up triangles), A = 3 (down tri-
angles), A = 5 (diamonds), and SFR network (left triangles). Each has 106

avalanche records on one network for statistics. λ = 3, m = 4, N = 105.
The loosing probability is f = 0.001. Inset: range distribution of the same
networks; same symbols represent same networks as that in the main frame.

Synchronization is important to many network functions.
Now we investigate how the geographical constrains affect
the synchronizability of the network. To be concrete, we con-
sider the following general class of coupled-map networks:

xi
m+1 = f (xi

m) − ε
∑

j

GijH [f(xj
m)] (4)

where xm+1 = f (xm) is a d-dimensional map, ε is a global
coupling parameter, G is the Laplacian matrix, and H is
a coupling function. For convenience we choose G ij =
−Aij/ki for j �= i and Gii = 1, where ki is the degree
of node i and Aij is an element of the adjacent matrix A

of the network. The eigenvalues of the coupling matrix G

are real and nonnegative and can be sorted as 0 = λ1 � λ2

� · · · � λN . Since the rows of the coupling matrix G have
zero sum, Eq. (4) permits an exact synchronized solution:
x1

m = x2
m = · · · = xN

m = sm, where sm+1 = f (sm). To
gain insight, we set f(x) to be the one-dimensional logistic
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map f(x) = 1 − ax2 (0 < a � 2) and choose H(x) = x.
To characterize synchronization, we define synchroniza-

tion error σ = 〈|xi
m − 〈xi

m〉|〉, where 〈·〉 means average over
all nodes. It is observed that when the coupling strength ε

is greater than a critical value εc, σ < 10−10, i.e., all the
oscillators move identically and the system is synchronized.
Figure 6 shows the dependence of critical coupling strength
εc and the synchronization error on the clustering control pa-
rameter A. One can see that as A goes larger, both εc and σ

decreases, indicates a higher synchronizability. That is, when
nodes enlarge their circular connecting regions, the network
is more synchronizable. The reason of this is that when A is
large, a node can connect to a node faraway, thus the network
is less locally constrained. This leads to a smaller network
distance, as Fig. 7 (a) shows, which means the nodes in the
network communicates better, resulting in a better synchro-
nizability. Another factor is that as A increase, the network is

Fig. 6 (a) The critical strength parameter ε versus A at a = 1.60. (b) The
synchronization error σ versus A.

more homogeneous in the sense that the maximum load, de-
fined by the number of shortest pathes passing through a node,
decreases [Fig. 7 (b)]. Thus the information communication
is less jammed and makes for a better synchronizability.

Fig. 7 (a) The average network distance versus A. (b) The maximum nor-
malized load versus A.

Synchronization on random networks, i.e., each pair of
nodes has a probability p to be connected, has been widely
studied. Most results concentrates on numerical simulations,
recently, using the master stability analysis and the eigenvalue
analysis, we provided a theory predicting the synchronization
region of the random network for a given dynamical parame-
ter of the system [26].

The coupled system (4) is synchronizable only if the effec-
tive coupling strength K = ελi (i > 1) falls into a certain
interval (K1, K2), or K1 < ελ2 � · · · � ελN < K2, where
K1 and K2 depends on the dynamics of a single oscillator
only [33]. For 1-D dynamical systems with Lyapunov expo-
nent µ and linear coupling, K1 = 1−e−µ and K2 = 1+e−µ.
The network is synchronizable if K1 < ελ2 and ελN < K2.
Via eigenvalue analysis, we obtained that

λ2 ≈1 − 2
√

(1 − p)/(Np)

λ2 ≈1 + 2
√

(1 − p)/(Np)

Therefore, the synchronization condition is

1 − e−µ

1 − 2
√

(1 − p)/(Np)
< ε <

1 + e−µ

1 + 2
√

(1 − p)/(Np)
(5)

[Since in most relevant cases, the upper limit (1 + e−µ)(1 +

2
√

(1 − p)/(Np)) is greater than 1, so in the following, we

just discuss the lower limit (1−e−µ)(1−2
√

(1 − p)/(Np))].
Several conclusions are at hand for different limiting cases:

(1) pC1, Eq. (5) becomes

1 − e−µ < ε (6)

which is consistent with the result of globally coupled net-
work (GCN).

(2) Keep p fixed, and let N → ∞, Eq. (5) can also be
rewritten as
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1 − e−µ < ε (7)

which implies that in this limit, the behavior of this system
would be equivalent to that of a GCN.

(3) Denote k = Np, Eq. (5) becomes

1 − e−µ

1 − 2
√

1/k − 1/N
< ε (8)

If N � k, then 1/N can be neglected, the above equation
becomes

1 − e−µ

1 − 2
√

1/k
< ε (9)

Set ε = 1, the synchronization condition becomes

k > K = 4e2µ (10)

which implies that for ER random networks, one can have
chaotic synchronization for arbitrary system size, if the cou-
pling is strong enough, i.e. ε = 1, and if the average degree
is larger than some threshold determined by the value of the
maximal Lyapunov exponent of the individual dynamics.

Earlier works suggest that small-world and scale-free net-
works are generally more synchronizable than regular net-
works. While heterogeneous degree distributions can inhibit
synchronization, adding suitable weights to the network el-
ements can enhance their chances to synchronize with each
other. In general, given a complex network with a fixed num-
ber of nodes, its synchronizability can be improved by in-
creasing the number of links. This is intuitive as a denser
linkage makes the network more tightly coupled or, “smaller,”
thereby facilitating synchronization. A clustered network,
which consists of M groups, where nodes within each group
are densely connected with probability ps, but the linkage
among the groups is sparse (with probability p l), however,
has a different set of rules that determine the synchronizabil-
ity [27]. Namely, the synchronizability of a clustered network
is determined by the interplay between the inter-connections
(links among clusters) and intra-connections (links within
clusters) of the network. Strong synchronizability requires
that the numbers of the inter-links and intra-links be approx-
imately matched. In this case, increasing the number of
links can indeed enhance the synchronizability. However, if
the matching is deteriorated, synchronization can be severely
suppressed or even totally destroyed.

The synchronization condition of system (4) is λ2 > (1 −
e−µ)/ε. For clustered networks, the normalized eigenvector
e2 corresponded to λ2, e.g. Ge2 = λ2e2, has a special struc-
ture that the components of the eigenvector e2 have approxi-
mately the same value within any cluster, while they can vary
among clusters. λ2 can be expressed as λ2 = eT

2 Ge2. After

lengthy deviation,

λ2 ≈ Npl

nps + (N − n)pl
(11)

λ2 decreases as ps (or the number of intra-cluster links) in-
creases, which means, for the clustered network, more intra-
cluster links, although makes the network smaller, deterio-
rates the synchronizability of the network.

The synchronization time T -average time required for the
system to become synchronized from random initial values-
can be used to characterize the ability to synchronize. The
less this time, the more synchronizable the system is. But if
the system is unstable (unsynchronizable), it can not reach a
synchronization state, which means this time equals infinity.
Figure 8 shows this synchronization time T vs two control
parameters pl and ps. This gives the synchronizable region
(grey levels in Fig. 8) in the parameter space that the system
becomes synchronized within a certain time, and unsynchro-
nizable region (white in Fig. 8) that the time for the system
to become synchronized limits to infinity. The lines of the
boundaries of the synchronizable and unsynchronizable re-
gions are determined by linear stability analysis (see below).
The striking thing Fig. 8 revealed is that for a given p l (inter-
connection strength), e.g. pl = 0.2 in Fig. 8 (a), as ps (intra-
connection strength) increases from ps = 0.2, synchroniza-
tion time T is also increased, and at a certain point (around
0.75 in this case), the system becomes unsynchronizable. So

Fig. 8 (Color online) Contour plot of the logarithm of the synchronization
time T in (pl, ps) space for coupled logistic maps with N = 100 and M =
2 (a)(b), N = 500 and M = 10 (c)(d), and ε = 1 (a)(c), ε = 0.8 (b)(d).
White region means T limits to infinity, which indicates an unsynchronizable
region. The boundary lines are determined by theory. Each data point is the
result of averaging over 100 network realizations.
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it turns out that if the connections within a cluster are too
strong, it will destroy the global synchronization. This is rea-
sonable since if the connections within a cluster increase, the
cluster itself has stronger ability to synchronize, while rela-
tively, the connections between clusters becomes weaker, and
not strong enough to spur different almost synchronized clus-
ters into the globally synchronization state. Thus the whole
system is separated into different, almost freely oscillated
synchronized clusters.

In conclusion, we shortly reviewed our recent progress
on geographical complex networks with respect of statistics,
modelling, robustness, and synchronizability. It has been
shown that the geographical constrains have important influ-
ence on network properties, both topologically and dynam-
ically. Synchronization on random networks and clustered
networks is also studied.
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